Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Network Satisfaction Problems for Symmetric Relation Algebras with a Flexible Atom (2008.11943v2)

Published 27 Aug 2020 in math.LO, cs.CC, cs.LO, and math.RA

Abstract: Robin Hirsch posed in 1996 the 'Really Big Complexity Problem': classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a flexible atom; in this case, the problem is NP-complete or in P. The classification task can be reduced to the case where A is integral. If a finite integral relation algebra has a flexible atom, then it has a normal representation B. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of B. We also use a Ramsey-type result of Ne\v{s}et\v{r}il and R\"odl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.