Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Satisfaction Problems Solved by k-Consistency (2304.12871v1)

Published 25 Apr 2023 in math.LO, cs.CC, cs.LO, and math.RA

Abstract: We show that the problem of deciding for a given finite relation algebra A whether the network satisfaction problem for A can be solved by the k-consistency procedure, for some natural number k, is undecidable. For the important class of finite relation algebras A with a normal representation, however, the decidability of this problem remains open. We show that if A is symmetric and has a flexible atom, then the question whether NSP(A) can be solved by k-consistency, for some natural number k, is decidable (even in polynomial time in the number of atoms of A). This result follows from a more general sufficient condition for the correctness of the k-consistency procedure for finite symmetric relation algebras. In our proof we make use of a result of Alexandr Kazda about finite binary conservative structures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.