Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of hybrid run-time power models for the ARM big.LITTLE architecture (2008.10604v1)

Published 24 Aug 2020 in cs.AR and cs.DC

Abstract: Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.

Citations (15)

Summary

We haven't generated a summary for this paper yet.