Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors (1506.08988v1)

Published 30 Jun 2015 in cs.PF, cs.DC, cs.MS, and cs.NA

Abstract: Asymmetric multicore processors (AMPs) have recently emerged as an appealing technology for severely energy-constrained environments, especially in mobile appliances where heterogeneity in applications is mainstream. In addition, given the growing interest for low-power high performance computing, this type of architectures is also being investigated as a means to improve the throughput-per-Watt of complex scientific applications. In this paper, we design and embed several architecture-aware optimizations into a multi-threaded general matrix multiplication (gemm), a key operation of the BLAS, in order to obtain a high performance implementation for ARM big.LITTLE AMPs. Our solution is based on the reference implementation of gemm in the BLIS library, and integrates a cache-aware configuration as well as asymmetric--static and dynamic scheduling strategies that carefully tune and distribute the operation's micro-kernels among the big and LITTLE cores of the target processor. The experimental results on a Samsung Exynos 5422, a system-on-chip with ARM Cortex-A15 and Cortex-A7 clusters that implements the big.LITTLE model, expose that our cache-aware versions of gemm with asymmetric scheduling attain important gains in performance with respect to its architecture-oblivious counterparts while exploiting all the resources of the AMP to deliver considerable energy efficiency.

Citations (18)

Summary

We haven't generated a summary for this paper yet.