Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Graph Learning by Joint Modeling of Consistency and Inconsistency (2008.10208v2)

Published 24 Aug 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views. However, existing graph learning methods mostly focus on the multi-view consistency issue, yet often neglect the inconsistency across multiple views, which makes them vulnerable to possibly low-quality or noisy datasets. To overcome this limitation, we propose a new multi-view graph learning framework, which for the first time simultaneously and explicitly models multi-view consistency and multi-view inconsistency in a unified objective function, through which the consistent and inconsistent parts of each single-view graph as well as the unified graph that fuses the consistent parts can be iteratively learned. Though optimizing the objective function is NP-hard, we design a highly efficient optimization algorithm which is able to obtain an approximate solution with linear time complexity in the number of edges in the unified graph. Furthermore, our multi-view graph learning approach can be applied to both similarity graphs and dissimilarity graphs, which lead to two graph fusion-based variants in our framework. Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Youwei Liang (16 papers)
  2. Dong Huang (102 papers)
  3. Chang-Dong Wang (39 papers)
  4. Philip S. Yu (592 papers)
Citations (65)