Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor-based Graph Learning with Consistency and Specificity for Multi-view Clustering (2403.18393v2)

Published 27 Mar 2024 in cs.LG

Abstract: In the context of multi-view clustering, graph learning is recognized as a crucial technique, which generally involves constructing an adaptive neighbor graph based on probabilistic neighbors, and then learning a consensus graph to for clustering. However, they are confronted with two limitations. Firstly, they often rely on Euclidean distance to measure similarity when constructing the adaptive neighbor graph, which proves inadequate in capturing the intrinsic structure among data points in practice. Secondly, most of these methods focus solely on consensus graph, ignoring unique information from each view. Although a few graph-based studies have considered using specific information as well, the modelling approach employed does not exclude the noise impact from the specific component. To this end, we propose a novel tensor-based multi-view graph learning framework that simultaneously considers consistency and specificity, while effectively eliminating the influence of noise. Specifically, we calculate similarity distance on the Stiefel manifold to preserve the intrinsic properties of data. By making an assumption that the learned neighbor graph of each view comprises a consistent part, a specific part, and a noise part, we formulate a new tensor-based target graph learning paradigm for noise-free graph fusion. Owing to the benefits of tensor singular value decomposition (t-SVD) in uncovering high-order correlations, this model is capable of achieving a complete understanding of the target graph. Furthermore, we derive an algorithm to address the optimization problem. Experiments on six datasets have demonstrated the superiority of our method. We have released the source code on https://github.com/lshi91/CSTGL-Code.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv preprint arXiv:1304.5634, 2013.
  2. R. Zhang, F. Nie, X. Li, and X. Wei, “Feature selection with multi-view data: A survey,” Information Fusion, vol. 50, pp. 158–167, 2019.
  3. J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview: Recent progress and new challenges,” Information Fusion, vol. 38, pp. 43–54, 2017.
  4. Y. Li, M. Yang, and Z. Zhang, “A survey of multi-view representation learning,” IEEE transactions on knowledge and data engineering, vol. 31, no. 10, pp. 1863–1883, 2018.
  5. Y. Chen, X. Xiao, C. Peng, G. Lu, and Y. Zhou, “Low-rank tensor graph learning for multi-view subspace clustering,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 1, pp. 92–104, 2021.
  6. W. Cui, J. Du, D. Wang, F. Kou, and Z. Xue, “Mvgan: Multi-view graph attention network for social event detection,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 12, no. 3, pp. 1–24, 2021.
  7. Y. Liu, L. He, B. Cao, P. Yu, A. Ragin, and A. Leow, “Multi-view multi-graph embedding for brain network clustering analysis,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  8. Y. Zhang, J. Wu, Z. Cai, and S. Y. Philip, “Multi-view multi-label learning with sparse feature selection for image annotation,” IEEE Transactions on Multimedia, vol. 22, no. 11, pp. 2844–2857, 2020.
  9. H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 4238–4246.
  10. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of subspace structures by low-rank representation,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 171–184, 2012.
  11. E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.
  12. X. Peng, Z. Yu, Z. Yi, and H. Tang, “Constructing the l2-graph for robust subspace learning and subspace clustering,” IEEE transactions on cybernetics, vol. 47, no. 4, pp. 1053–1066, 2016.
  13. L. Cao, L. Shi, J. Wang, Z. Yang, and B. Chen, “Robust subspace clustering by logarithmic hyperbolic cosine function,” IEEE Signal Processing Letters, 2023.
  14. M. Brbić and I. Kopriva, “Multi-view low-rank sparse subspace clustering,” Pattern Recognition, vol. 73, pp. 247–258, 2018.
  15. ——, “l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-motivated low-rank sparse subspace clustering,” IEEE Transactions on Cybernetics, vol. 50, no. 4, pp. 1711–1725, 2018.
  16. C. Zhang, Q. Hu, H. Fu, P. Zhu, and X. Cao, “Latent multi-view subspace clustering,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4279–4287.
  17. C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized latent multi-view subspace clustering,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 1, pp. 86–99, 2018.
  18. D. Xie, X. Zhang, Q. Gao, J. Han, S. Xiao, and X. Gao, “Multiview clustering by joint latent representation and similarity learning,” IEEE transactions on cybernetics, vol. 50, no. 11, pp. 4848–4854, 2019.
  19. S. Luo, C. Zhang, W. Zhang, and X. Cao, “Consistent and specific multi-view subspace clustering,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  20. W. Zhu, J. Lu, and J. Zhou, “Structured general and specific multi-view subspace clustering,” Pattern Recognition, vol. 93, pp. 392–403, 2019.
  21. L. Xing, B. Chen, S. Du, Y. Gu, and N. Zheng, “Correntropy-based multiview subspace clustering,” IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3298–3311, 2019.
  22. M. Sun, P. Zhang, S. Wang, S. Zhou, W. Tu, X. Liu, E. Zhu, and C. Wang, “Scalable multi-view subspace clustering with unified anchors,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 3528–3536.
  23. Q. Gao, W. Xia, Z. Wan, D. Xie, and P. Zhang, “Tensor-svd based graph learning for multi-view subspace clustering,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3930–3937.
  24. Z. Long, C. Zhu, J. Chen, Z. Li, Y. Ren, and Y. Liu, “Multi-view mera subspace clustering,” IEEE Transactions on Multimedia, 2023.
  25. Y. Liu, Y. Tan, H. Wu, S. Huang, Y. Ren, and J. Lv, “Preserving local and global information: An effective metric-based subspace clustering,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 3619–3627.
  26. F. Nie, J. Li, X. Li et al., “Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification.” in IJCAI, vol. 9, 2016.
  27. ——, “Self-weighted multiview clustering with multiple graphs.” in IJCAI, 2017, pp. 2564–2570.
  28. H. Wang, Y. Yang, and B. Liu, “Gmc: Graph-based multi-view clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1116–1129, 2019.
  29. R. Wang, F. Nie, Z. Wang, H. Hu, and X. Li, “Parameter-free weighted multi-view projected clustering with structured graph learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 10, pp. 2014–2025, 2019.
  30. Y. Liang, D. Huang, and C.-D. Wang, “Consistency meets inconsistency: A unified graph learning framework for multi-view clustering,” in 2019 IEEE International Conference on Data Mining (ICDM).   IEEE, 2019, pp. 1204–1209.
  31. Z. Kang, C. Peng, Q. Cheng, X. Liu, X. Peng, Z. Xu, and L. Tian, “Structured graph learning for clustering and semi-supervised classification,” Pattern Recognition, vol. 110, p. 107627, 2021.
  32. Z. Li, C. Tang, X. Liu, X. Zheng, W. Zhang, and E. Zhu, “Consensus graph learning for multi-view clustering,” IEEE Transactions on Multimedia, vol. 24, pp. 2461–2472, 2021.
  33. J. Wen, K. Yan, Z. Zhang, Y. Xu, J. Wang, L. Fei, and B. Zhang, “Adaptive graph completion based incomplete multi-view clustering,” IEEE Transactions on Multimedia, vol. 23, pp. 2493–2504, 2020.
  34. H. Wang, G. Jiang, J. Peng, R. Deng, and X. Fu, “Towards adaptive consensus graph: multi-view clustering via graph collaboration,” IEEE Transactions on Multimedia, 2022.
  35. L. Xing, Y. Song, B. Chen, C. Yu, and J. Qin, “Incomplete multi-view clustering via correntropy and complement consensus learning,” IEEE Transactions on Multimedia, 2024.
  36. Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang, and Y. Qu, “On unifying multi-view self-representations for clustering by tensor multi-rank minimization,” International Journal of Computer Vision, vol. 126, pp. 1157–1179, 2018.
  37. J. Wu, Z. Lin, and H. Zha, “Essential tensor learning for multi-view spectral clustering,” IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 5910–5922, 2019.
  38. Y. Tang, Y. Xie, C. Zhang, and W. Zhang, “Constrained tensor representation learning for multi-view semi-supervised subspace clustering,” IEEE Transactions on Multimedia, vol. 24, pp. 3920–3933, 2021.
  39. J. Wu, X. Xie, L. Nie, Z. Lin, and H. Zha, “Unified graph and low-rank tensor learning for multi-view clustering,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 6388–6395.
  40. M.-S. Chen, C.-D. Wang, and J.-H. Lai, “Low-rank tensor based proximity learning for multi-view clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 5076–5090, 2022.
  41. G. Jiang, J. Peng, H. Wang, Z. Mi, and X. Fu, “Tensorial multi-view clustering via low-rank constrained high-order graph learning,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 8, pp. 5307–5318, 2022.
  42. W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. Tao, “Tensorized bipartite graph learning for multi-view clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 5187–5202, 2022.
  43. Q. Shen, T. Xu, Y. Liang, Y. Chen, and Z. He, “Robust tensor recovery for incomplete multi-view clustering,” IEEE Transactions on Multimedia, 2023.
  44. F. Nie, X. Wang, and H. Huang, “Clustering and projected clustering with adaptive neighbors,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 977–986.
  45. R. Chakraborty and B. C. Vemuri, “Statistics on the stiefel manifold: theory and applications,” 2019.
  46. M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging,” SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 1, pp. 148–172, 2013.
  47. Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J. T. Zhou, and Z. Xu, “Multi-graph fusion for multi-view spectral clustering,” Knowledge-Based Systems, vol. 189, p. 105102, 2020.
  48. Z. Ren, S. X. Yang, Q. Sun, and T. Wang, “Consensus affinity graph learning for multiple kernel clustering,” IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 3273–3284, 2020.
  49. Y. Chen, X. Xiao, and Y. Zhou, “Jointly learning kernel representation tensor and affinity matrix for multi-view clustering,” IEEE Transactions on Multimedia, vol. 22, no. 8, pp. 1985–1997, 2019.
  50. H. Wang, G. Han, B. Zhang, G. Tao, and H. Cai, “Multi-view learning a decomposable affinity matrix via tensor self-representation on grassmann manifold,” IEEE Transactions on Image Processing, vol. 30, pp. 8396–8409, 2021.
  51. J. Chen, G. Han, H. Cai, J. Ma, M. Kim, P. Laurienti, and G. Wu, “Estimating common harmonic waves of brain networks on stiefel manifold,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23.   Springer, 2020, pp. 367–376.
  52. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  53. W. Hu, D. Tao, W. Zhang, Y. Xie, and Y. Yang, “The twist tensor nuclear norm for video completion,” IEEE transactions on neural networks and learning systems, vol. 28, no. 12, pp. 2961–2973, 2016.
  54. K. Zhan, F. Nie, J. Wang, and Y. Yang, “Multiview consensus graph clustering,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1261–1270, 2018.
  55. M.-S. Chen, L. Huang, C.-D. Wang, and D. Huang, “Multi-view clustering in latent embedding space,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 3513–3520.
  56. W. Xia, X. Zhang, Q. Gao, X. Shu, J. Han, and X. Gao, “Multiview subspace clustering by an enhanced tensor nuclear norm,” IEEE Transactions on cybernetics, vol. 52, no. 9, pp. 8962–8975, 2021.
  57. S.-G. Fang, D. Huang, X.-S. Cai, C.-D. Wang, C. He, and Y. Tang, “Efficient multi-view clustering via unified and discrete bipartite graph learning,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  58. Y. Tan, Y. Liu, H. Wu, J. Lv, and S. Huang, “Metric multi-view graph clustering,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8, 2023, pp. 9962–9970.
  59. Y. Tan, Y. Liu, S. Huang, W. Feng, and J. Lv, “Sample-level multi-view graph clustering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 23 966–23 975.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Long Shi (51 papers)
  2. Lei Cao (60 papers)
  3. Yunshan Ye (1 paper)
  4. Yu Zhao (208 papers)
  5. Badong Chen (83 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets