Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning Facial Parameter Regressor for Action Unit Intensity Estimation via Differentiable Renderer (2008.08862v1)

Published 20 Aug 2020 in cs.CV

Abstract: Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. What's more, the qualitative results also demonstrate the validity of our method in the wild.

Citations (5)

Summary

We haven't generated a summary for this paper yet.