Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global-to-local Expression-aware Embeddings for Facial Action Unit Detection (2210.15160v2)

Published 27 Oct 2022 in cs.CV and cs.AI

Abstract: Expressions and facial action units (AUs) are two levels of facial behavior descriptors. Expression auxiliary information has been widely used to improve the AU detection performance. However, most existing expression representations can only describe pre-determined discrete categories (e.g., Angry, Disgust, Happy, Sad, etc.) and cannot capture subtle expression transformations like AUs. In this paper, we propose a novel fine-grained \textsl{Global Expression representation Encoder} to capture subtle and continuous facial movements, to promote AU detection. To obtain such a global expression representation, we propose to train an expression embedding model on a large-scale expression dataset according to global expression similarity. Moreover, considering the local definition of AUs, it is essential to extract local AU features. Therefore, we design a \textsl{Local AU Features Module} to generate local facial features for each AU. Specifically, it consists of an AU feature map extractor and a corresponding AU mask extractor. First, the two extractors transform the global expression representation into AU feature maps and masks, respectively. Then, AU feature maps and their corresponding AU masks are multiplied to generate AU masked features focusing on local facial region. Finally, the AU masked features are fed into an AU classifier for judging the AU occurrence. Extensive experiment results demonstrate the superiority of our proposed method. Our method validly outperforms previous works and achieves state-of-the-art performances on widely-used face datasets, including BP4D, DISFA, and BP4D+.

Summary

We haven't generated a summary for this paper yet.