2000 character limit reached
Zeros of a table of polynomials satisfying a four-term contiguous relation (2008.08707v3)
Published 19 Aug 2020 in math.CV
Abstract: For any $A(z),B(z),C(z)\in\mathbb{C}[z]$, we study the zero distribution of a table of polynomials $\left{ P_{m,n}(z)\right} {m,n\in\mathbb{N}{0}}$ satisfying the recurrence relation [ P_{m,n}(z)=A(z)P_{m-1,n}(z)+B(z)P_{m,n-1}(z)+C(z)P_{m-1,n-1}(z) ] with the initial condition $P_{0,0}(z)=1$ and $P_{-m,-n}(z)=0$ $\forall m,n\in\mathbb{N}$. We show that the zeros of $P_{m,n}(z)$ lie on a curve whose equation is given explicitly in terms of $A(z),B(z)$, and $C(z)$. We also study the zero distribution of a case with a general initial condition.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.