Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Step-Ahead Error Feedback for Distributed Training with Compressed Gradient (2008.05823v3)

Published 13 Aug 2020 in cs.LG, cs.DC, and stat.ML

Abstract: Although the distributed machine learning methods can speed up the training of large deep neural networks, the communication cost has become the non-negligible bottleneck to constrain the performance. To address this challenge, the gradient compression based communication-efficient distributed learning methods were designed to reduce the communication cost, and more recently the local error feedback was incorporated to compensate for the corresponding performance loss. However, in this paper, we will show that a new "gradient mismatch" problem is raised by the local error feedback in centralized distributed training and can lead to degraded performance compared with full-precision training. To solve this critical problem, we propose two novel techniques, 1) step ahead and 2) error averaging, with rigorous theoretical analysis. Both our theoretical and empirical results show that our new methods can handle the "gradient mismatch" problem. The experimental results show that we can even train faster with common gradient compression schemes than both the full-precision training and local error feedback regarding the training epochs and without performance loss.

Citations (13)

Summary

We haven't generated a summary for this paper yet.