Diffusion approximation for fully coupled stochastic differential equations
Abstract: We consider a Poisson equation in $\mathbb Rd$ for the elliptic operator corresponding to an ergodic diffusion process. Optimal regularity and smoothness with respect to the parameter are obtained under mild conditions on the coefficients. The result is then applied to establish a general diffusion approximation for fully coupled multi-time-scales stochastic differential equations with only H\"older continuous coefficients. Four different averaged equations as well as rates of convergence are obtained. Moreover, the convergence is shown to rely only on the regularities of the coefficients with respect to the slow variable, and does not depend on their regularities with respect to the fast component.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.