$L^p$-theory for Cauchy-transform on the unit disk (2008.03068v1)
Abstract: Let $\mathbb{D}$ be the unit disk and $\varphi\in Lp(\mathbb{D}, \mathrm{d}A)$, where $1\leq p\leq\infty$. For $z\in\mathbb{D}$, the Cauchy-transform on $\mathbb{D}$, denote by $\mathcal{P}$, is defined as follows: $$\mathcal{P}\varphi=-\int_{\mathbb{D}}\left(\frac{\varphi(w)}{w-z}+\frac{z\overline{\varphi(w)}}{1-\bar{w}z}\right)\mathrm{d}A(w).$$ The Beurling transform on $\mathbb{D}$, denote by $\mathcal{H}$, is now defined as the $z$-derivative of $\mathcal{P}$. In this paper, by using Hardy's type inequalities and Bessel functions, we show that $|\mathcal{P}|{L2\to L2}=\alpha\approx1.086$, where $\alpha$ is a solution to the equation: $2J_0(2/\alpha)-\alpha J_1(2/\alpha)=0$, and $J_0$, $J_1$ are Bessel functions. Moreover, for $p>2$, by using Taylor expansion, Parseval's formula and hypergeometric functions, we also prove that $|\mathcal{P}|{Lp\to L{\infty}}=2(\Gamma(2-q)/\Gamma2(2-\frac{q}{2})){1/q}$, where $q=p/(p-1)$ is the conjugate exponent of $p$, and $\Gamma$ is the Gamma function. Finally, applying the same techniques developed in this paper, we show that the Beurling transform $\mathcal{H}$ acts as an isometry of $L2(\mathbb{D}, \mathrm{d}A)$.