$L^p$ Boundedness of Hilbert Transforms Associated with Variable Plane Curves (1806.08589v3)
Abstract: Let $p\in (1,\infty)$. In this paper, for any given measurable function $u:\ \mathbb{R}\rightarrow \mathbb{R}$ and a generalized plane curve $\gamma$ satisfying some conditions, the $Lp(\mathbb{R}2)$ boundedness of the Hilbert transform along the variable plane curve $u(x_1)\gamma$ $$H_{u,\gamma}f(x_1,x_2):=\mathrm{p.\,v.}\int_{-\infty}{\infty}f(x_1-t,x_2-u(x_1)\gamma(t)) \,\frac{\textrm{d}t}{t}, \quad \forall\, (x_1,x_2)\in\mathbb{R}2, $$ is obtained. At the same time, the $Lp(\mathbb{R})$ boundedness of the corresponding Carleson operator along the general curve $\gamma$ $$\mathcal{C}{u,\gamma}f(x):=\mathrm{p.\,v.}\int{-\infty}{\infty}e{iu(x)\gamma (t)}f(x-t)\,\frac{\textrm{d}t}{t}, \quad\forall\, x\in\mathbb{R}, $$ is also obtained. Moreover, all the bounds are independent of the measurable function $u$.