Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploiting Deep Sentential Context for Expressive End-to-End Speech Synthesis (2008.00613v1)

Published 3 Aug 2020 in eess.AS and cs.SD

Abstract: Attention-based seq2seq text-to-speech systems, especially those use self-attention networks (SAN), have achieved state-of-art performance. But an expressive corpus with rich prosody is still challenging to model as 1) prosodic aspects, which span across different sentential granularities and mainly determine acoustic expressiveness, are difficult to quantize and label and 2) the current seq2seq framework extracts prosodic information solely from a text encoder, which is easily collapsed to an averaged expression for expressive contents. In this paper, we propose a context extractor, which is built upon SAN-based text encoder, to sufficiently exploit the sentential context over an expressive corpus for seq2seq-based TTS. Our context extractor first collects prosodic-related sentential context information from different SAN layers and then aggregates them to learn a comprehensive sentence representation to enhance the expressiveness of the final generated speech. Specifically, we investigate two methods of context aggregation: 1) direct aggregation which directly concatenates the outputs of different SAN layers, and 2) weighted aggregation which uses multi-head attention to automatically learn contributions for different SAN layers. Experiments on two expressive corpora show that our approach can produce more natural speech with much richer prosodic variations, and weighted aggregation is more superior in modeling expressivity.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.