Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

MSPP: A Highly Efficient and Scalable Algorithm for Mining Similar Pairs of Points (2007.16111v1)

Published 31 Jul 2020 in cs.DS

Abstract: The closest pair of points problem or closest pair problem (CPP) is an important problem in computational geometry where we have to find a pair of points from a set of points in metric space with the smallest distance between them. This problem arises in a number of applications, such as but not limited to clustering, graph partitioning, image processing, patterns identification, and intrusion detection. For example, in air-traffic control, we must monitor aircrafts that come too close together, since this may potentially indicate a possible collision. Numerous algorithms have been presented for solving the CPP. The algorithms that are employed in practice have a worst case quadratic run time complexity. In this article we present an elegant approximation algorithm for the CPP called MSPP: Mining Similar Pairs of Points. It is faster than currently best known algorithms while maintaining a very good accuracy. The proposed algorithm also detects a set of closely similar pairs of points in Euclidean and Pearson metric spaces and can be adapted in numerous real world applications, such as clustering, dimension reduction, constructing and analyzing gene/transcript co-expression network, among others.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.