Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonnegative Low Rank Tensor Approximation and its Application to Multi-dimensional Images

Published 28 Jul 2020 in cs.CV, cs.NA, eess.IV, and math.NA | (2007.14137v2)

Abstract: The main aim of this paper is to develop a new algorithm for computing nonnegative low rank tensor approximation for nonnegative tensors that arise in many multi-dimensional imaging applications. Nonnegativity is one of the important property as each pixel value refers to nonzero light intensity in image data acquisition. Our approach is different from classical nonnegative tensor factorization (NTF) which requires each factorized matrix and/or tensor to be nonnegative. In this paper, we determine a nonnegative low Tucker rank tensor to approximate a given nonnegative tensor. We propose an alternating projections algorithm for computing such nonnegative low rank tensor approximation, which is referred to as NLRT. The convergence of the proposed manifold projection method is established. Experimental results for synthetic data and multi-dimensional images are presented to demonstrate the performance of NLRT is better than state-of-the-art NTF methods.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.