Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank nonnegative tensor approximation via alternating projections and sketching (2209.02060v2)

Published 5 Sep 2022 in math.NA, cs.NA, and math.OC

Abstract: We show how to construct nonnegative low-rank approximations of nonnegative tensors in Tucker and tensor train formats. We use alternating projections between the nonnegative orthant and the set of low-rank tensors, using STHOSVD and TTSVD algorithms, respectively, and further accelerate the alternating projections using randomized sketching. The numerical experiments on both synthetic data and hyperspectral images show the decay of the negative elements and that the error of the resulting approximation is close to the initial error obtained with STHOSVD and TTSVD. The proposed method for the Tucker case is superior to the previous ones in terms of computational complexity and decay of negative elements. The tensor train case, to the best of our knowledge, has not been studied before.

Citations (13)

Summary

We haven't generated a summary for this paper yet.