Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The weak converse of Zeckendorf's Theorem (2007.12169v3)

Published 23 Jul 2020 in math.NT

Abstract: By Zeckendorf's Theorem, every positive integer is uniquely written as a sum of non-adjacent terms of the Fibonacci sequence, and its converse states that if a sequence in the positive integers has this property, it must be the Fibonacci sequence. If we instead consider the problem of finding a monotone sequence with such a property, we call it the weak converse of Zeckendorf's theorem. In this paper, we first introduce a generalization of Zeckendorf conditions, and subsequently, Zeckendorf's theorems and their weak converses for the general Zeckendorf conditions. We also extend the generalization and results to the real numbers in the interval $(0,1)$, and to $p$-adic integers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube