Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sinkhorn Barycenter via Functional Gradient Descent (2007.10449v1)

Published 20 Jul 2020 in cs.LG and stat.ML

Abstract: In this paper, we consider the problem of computing the barycenter of a set of probability distributions under the Sinkhorn divergence. This problem has recently found applications across various domains, including graphics, learning, and vision, as it provides a meaningful mechanism to aggregate knowledge. Unlike previous approaches which directly operate in the space of probability measures, we recast the Sinkhorn barycenter problem as an instance of unconstrained functional optimization and develop a novel functional gradient descent method named Sinkhorn Descent (SD). We prove that SD converges to a stationary point at a sublinear rate, and under reasonable assumptions, we further show that it asymptotically finds a global minimizer of the Sinkhorn barycenter problem. Moreover, by providing a mean-field analysis, we show that SD preserves the weak convergence of empirical measures. Importantly, the computational complexity of SD scales linearly in the dimension $d$ and we demonstrate its scalability by solving a $100$-dimensional Sinkhorn barycenter problem.

Citations (10)

Summary

We haven't generated a summary for this paper yet.