Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Low-Rank Approximation of Regularized Wasserstein Distance (2004.12511v2)

Published 27 Apr 2020 in math.NA and cs.NA

Abstract: Sinkhorn divergence is a measure of dissimilarity between two probability measures. It is obtained through adding an entropic regularization term to Kantorovich's optimal transport problem and can hence be viewed as an entropically regularized Wasserstein distance. Given two discrete probability vectors in the $n$-simplex and supported on two bounded spaces in ${\mathbb R}d$, we present a fast method for computing Sinkhorn divergence when the cost matrix can be decomposed into a $d$-term sum of asymptotically smooth Kronecker product factors. The method combines Sinkhorn's matrix scaling iteration with a low-rank hierarchical representation of the scaling matrices to achieve a near-linear complexity ${\mathcal O}(n \log3 n)$. This provides a fast and easy-to-implement algorithm for computing Sinkhorn divergence, enabling its applicability to large-scale optimization problems, where the computation of classical Wasserstein metric is not feasible. We present a numerical example related to signal processing to demonstrate the applicability of quadratic Sinkhorn divergence in comparison with quadratic Wasserstein distance and to verify the accuracy and efficiency of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mohammad Motamed (13 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.