Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lyapunov exponents of the half-line SHE (2007.10212v1)

Published 20 Jul 2020 in math.PR, math-ph, and math.MP

Abstract: We consider the half-line stochastic heat equation (SHE) with Robin boundary parameter $A = -\frac{1}{2}$. Under narrow wedge initial condition, we compute every positive (including non-integer) Lyapunov exponents of the half-line SHE. As a consequence, we prove a large deviation principle for the upper tail of the half-line KPZ equation under Neumann boundary parameter $A = -\frac{1}{2}$ with rate function $\Phi_+{\text{hf}} (s) = \frac{2}{3} s{\frac{3}{2}}$. This confirms the prediction of [Krajenbrink and Le Doussal 2018] and [Meerson, Vilenkin 2018] for the upper tail exponent of the half-line KPZ equation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)