Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On sampling symmetric Gibbs distributions on sparse random graphs and hypergraphs (2007.07145v4)

Published 14 Jul 2020 in cs.DM and math.CO

Abstract: We introduce efficient algorithms for approximate sampling from symmetric Gibbs distributions on the sparse random (hyper)graph. The examples we consider include (but are not restricted to) important distributions on spin systems and spin-glasses such as the q state antiferromagnetic Potts model for $q\geq 2$, including the colourings, the uniform distributions over the Not-All-Equal solutions of random k-CNF formulas. Finally, we present an algorithm for sampling from the spin-glass distribution called the k-spin model. To our knowledge this is the first, rigorously analysed, efficient algorithm for spin-glasses which operates in a non trivial range of the parameters. Our approach builds on the one that was introduced in [Efthymiou: SODA 2012]. For a symmetric Gibbs distribution $\mu$ on a random (hyper)graph whose parameters are within an certain range, our algorithm has the following properties: with probability $1-o(1)$ over the input instances, it generates a configuration which is distributed within total variation distance $n{-\Omega(1)}$ from $\mu$. The time complexity is $O((n\log n)2)$. The algorithm requires a range of the parameters which, for the graph case, coincide with the tree-uniqueness region, parametrised w.r.t. the expected degree d. For the hypergraph case, where uniqueness is less restrictive, we go beyond uniqueness. Our approach utilises in a novel way the notion of contiguity between Gibbs distributions and the so-called teacher-student model.

Citations (10)

Summary

We haven't generated a summary for this paper yet.