Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Privacy Loss due to Time Series Matching of Dependent Users (2007.06119v1)

Published 12 Jul 2020 in cs.CR

Abstract: The Internet of Things (IoT) promises to improve user utility by tuning applications to user behavior, but revealing the characteristics of a user's behavior presents a significant privacy risk. Our previous work has established the challenging requirements for anonymization to protect users' privacy in a Bayesian setting in which we assume a powerful adversary who has perfect knowledge of the prior distribution for each user's behavior. However, even sophisticated adversaries do not often have such perfect knowledge; hence, in this paper, we turn our attention to an adversary who must learn user behavior from past data traces of limited length. We also assume there exists dependency between data traces of different users, and the data points of each user are drawn from a normal distribution. Results on the lengths of training sequences and data sequences that result in a loss of user privacy are presented.

Citations (1)

Summary

We haven't generated a summary for this paper yet.