Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Loss in Privacy due to Dependency in Gaussian Traces (1809.10289v2)

Published 27 Sep 2018 in cs.IT and math.IT

Abstract: The rapid growth of the Internet of Things (IoT) necessitates employing privacy-preserving techniques to protect users' sensitive information. Even when user traces are anonymized, statistical matching can be employed to infer sensitive information. In our previous work, we have established the privacy requirements for the case that the user traces are instantiations of discrete random variables and the adversary knows only the structure of the dependency graph, i.e., whether each pair of users is connected. In this paper, we consider the case where data traces are instantiations of Gaussian random variables and the adversary knows not only the structure of the graph but also the pairwise correlation coefficients. We establish the requirements on anonymization to thwart such statistical matching, which demonstrate the significant degree to which knowledge of the pairwise correlation coefficients further significantly aids the adversary in breaking user anonymity.

Citations (11)

Summary

We haven't generated a summary for this paper yet.