Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lorentz and permutation invariants of particles II (2007.05746v1)

Published 11 Jul 2020 in hep-th, hep-ph, math-ph, and math.MP

Abstract: Two theorems of Weyl tell us that the algebra of Lorentz- (and parity-) invariant polynomials in the momenta of $n$ particles are generated by the dot products and that the redundancies which arise when $n$ exceeds the spacetime dimension $d$ are generated by the $(d+1)$-minors of the $n \times n$ matrix of dot products. Here, we use the Cohen-Macaulay structure of the invariant algebra to provide a more direct characterisation in terms of a Hironaka decomposition. Among the benefits of this approach is that it can be generalized straightforwardly to cases where a permutation group acts on the particles, such as when some of the particles are identical. In the first non-trivial case, $n=d+1$, we give a homogeneous system of parameters that is valid for the action of an arbitrary permutation symmetry and make a conjecture for the full Hironaka decomposition in the case without permutation symmetry. An appendix gives formul\ae\ for the computation of the relevant Hilbert series for $d \leq 4$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube