Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

Large genus asymptotic geometry of random square-tiled surfaces and of random multicurves (2007.04740v2)

Published 9 Jul 2020 in math.GT, math.CO, math.DG, and math.PR

Abstract: We study the combinatorial geometry of a random closed multicurve on a surface of large genus and of a random square-tiled surface of large genus. We prove that primitive components of a random multicurve represent linearly independent homology cycles with asymptotic probability 1 and that it is primitive with asymptotic probability $\sqrt{2}/2$. We prove analogous properties for random square-tiled surfaces. In particular, we show that all conical singularities of a random square-tiled surface belong to the same leaf of the horizontal foliation and to the same leaf of the vertical foliation with asymptotic probability 1. We show that the number of components of a random multicurve and the number of maximal horizontal cylinders of a random square-tiled surface of genus $g$ are both very well-approximated by the number of cycles of a random permutation for an explicit non-uniform measure on the symmetric group of $3g-3$ elements. In particular, we prove that the expected value of these quantities is asymptotically equivalent to $(\log(6g-6) + \gamma)/2 + \log 2$. These results are based on our formula for the Masur--Veech volume of the moduli space of holomorphic quadratic differentials combined with deep large genus asymptotic analysis of this formula performed by A.~Aggarwal and with the uniform asymptotic formula for intersection numbers of $\psi$-classes on the Deligne-Mumford compactification of the moduli space of curves proved by A.~Aggarwal.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.