Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Porosity, Permeability, and Tortuosity of Porous Media from Images by Deep Learning (2007.02820v1)

Published 6 Jul 2020 in physics.comp-ph, cond-mat.dis-nn, cs.LG, physics.flu-dyn, and stat.ML

Abstract: Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ($\varphi$), permeability $k$, and tortuosity ($T$). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. It is demonstrated that the CNNs are able to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between $T$ and $\varphi$ has been reproduced and compared with the empirical estimate. The analysis has been performed for the systems with $\varphi \in (0.37,0.99)$ which covers five orders of magnitude span for permeability $k \in (0.78, 2.1\times 105)$ and tortuosity $T \in (1.03,2.74)$.

Citations (92)

Summary

We haven't generated a summary for this paper yet.