Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplicial Complex based Point Correspondence between Images warped onto Manifolds (2007.02381v3)

Published 5 Jul 2020 in cs.CV and cs.LG

Abstract: Recent increase in the availability of warped images projected onto a manifold (e.g., omnidirectional spherical images), coupled with the success of higher-order assignment methods, has sparked an interest in the search for improved higher-order matching algorithms on warped images due to projection. Although currently, several existing methods "flatten" such 3D images to use planar graph / hypergraph matching methods, they still suffer from severe distortions and other undesired artifacts, which result in inaccurate matching. Alternatively, current planar methods cannot be trivially extended to effectively match points on images warped onto manifolds. Hence, matching on these warped images persists as a formidable challenge. In this paper, we pose the assignment problem as finding a bijective map between two graph induced simplicial complexes, which are higher-order analogues of graphs. We propose a constrained quadratic assignment problem (QAP) that matches each p-skeleton of the simplicial complexes, iterating from the highest to the lowest dimension. The accuracy and robustness of our approach are illustrated on both synthetic and real-world spherical / warped (projected) images with known ground-truth correspondences. We significantly outperform existing state-of-the-art spherical matching methods on a diverse set of datasets.

Summary

We haven't generated a summary for this paper yet.