Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Flexible Tensor Block Coordinate Ascent Scheme for Hypergraph Matching (1504.07907v2)

Published 29 Apr 2015 in cs.CV

Abstract: The estimation of correspondences between two images resp. point sets is a core problem in computer vision. One way to formulate the problem is graph matching leading to the quadratic assignment problem which is NP-hard. Several so called second order methods have been proposed to solve this problem. In recent years hypergraph matching leading to a third order problem became popular as it allows for better integration of geometric information. For most of these third order algorithms no theoretical guarantees are known. In this paper we propose a general framework for tensor block coordinate ascent methods for hypergraph matching. We propose two algorithms which both come along with the guarantee of monotonic ascent in the matching score on the set of discrete assignment matrices. In the experiments we show that our new algorithms outperform previous work both in terms of achieving better matching scores and matching accuracy. This holds in particular for very challenging settings where one has a high number of outliers and other forms of noise.

Citations (69)

Summary

We haven't generated a summary for this paper yet.