On $p$-adic versions of the Manin-Mumford Conjecture (2007.02069v1)
Abstract: We prove $p$-adic versions of a classical result in arithmetic geometry stating that an irreducible subvariety of an abelian variety with dense torsion has to be the translate of a subgroup by a torsion point. We do so in the context of certain rigid analytic spaces and formal groups over a $p$-adic field $K$ or its ring of integers $R$, respectively. In particular, we show that the rigidity results for algebraic functions underlying the so-called Manin-Mumford Conjecture generalize to suitable $p$-adic analytic functions. In the formal setting, this approach leads us to uncover purely $p$-adic Manin-Mumford type results for formal groups not coming from abelian schemes. Moreover, we observe that a version of the Tate-Voloch Conjecture holds in the $p$-adic setting: torsion points either lie squarely on a subscheme or are uniformly bounded away from it in the $p$-adic distance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.