Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Black-box Certification and Learning under Adversarial Perturbations (2006.16520v2)

Published 30 Jun 2020 in stat.ML and cs.LG

Abstract: We formally study the problem of classification under adversarial perturbations from a learner's perspective as well as a third-party who aims at certifying the robustness of a given black-box classifier. We analyze a PAC-type framework of semi-supervised learning and identify possibility and impossibility results for proper learning of VC-classes in this setting. We further introduce a new setting of black-box certification under limited query budget, and analyze this for various classes of predictors and perturbation. We also consider the viewpoint of a black-box adversary that aims at finding adversarial examples, showing that the existence of an adversary with polynomial query complexity can imply the existence of a sample efficient robust learner.

Citations (20)

Summary

We haven't generated a summary for this paper yet.