Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Robustness: What fools you makes you stronger (2102.05475v2)

Published 10 Feb 2021 in cs.LG and cs.CR

Abstract: We prove an exponential separation for the sample complexity between the standard PAC-learning model and a version of the Equivalence-Query-learning model. We then show that this separation has interesting implications for adversarial robustness. We explore a vision of designing an adaptive defense that in the presence of an attacker computes a model that is provably robust. In particular, we show how to realize this vision in a simplified setting. In order to do so, we introduce a notion of a strong adversary: he is not limited by the type of perturbations he can apply but when presented with a classifier can repetitively generate different adversarial examples. We explain why this notion is interesting to study and use it to prove the following. There exists an efficient adversarial-learning-like scheme such that for every strong adversary $\mathbf{A}$ it outputs a classifier that (a) cannot be strongly attacked by $\mathbf{A}$, or (b) has error at most $\epsilon$. In both cases our scheme uses exponentially (in $\epsilon$) fewer samples than what the PAC bound requires.

Citations (2)

Summary

We haven't generated a summary for this paper yet.