Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Full vertex algebra and bootstrap -- consistency of four point functions in 2d CFT (2006.15859v1)

Published 29 Jun 2020 in math.QA, hep-th, and math.RT

Abstract: In physics, it is believed that the consistency of two dimensional conformal field theory follows from the bootstrap equation. In this paper, we introduce the notion of a full vertex algebra by analyzing the bootstrap equation, which is a "real analytic" generalization of a $\mathbb{Z}$-graded vertex algebra. We also give a mathematical formulation of the consistency of four point correlation functions in two dimensional conformal field theory and prove it for a full vertex algebra with additional assumptions on the conformal symmetry. In particular, we show that the bootstrap equation together with the conformal symmetry implies the consistency of four point correlation functions. As an application, a deformable family of full vertex algebras parametrized by the Grassmanian is constructed, which appears in the toroidal compactification of string theory. This give us examples satisfying the above assumptions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube