Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Likelihood Maximization and Moment Matching in Low SNR Gaussian Mixture Models (2006.15202v1)

Published 26 Jun 2020 in math.ST, math.PR, and stat.TH

Abstract: We derive an asymptotic expansion for the log likelihood of Gaussian mixture models (GMMs) with equal covariance matrices in the low signal-to-noise regime. The expansion reveals an intimate connection between two types of algorithms for parameter estimation: the method of moments and likelihood optimizing algorithms such as Expectation-Maximization (EM). We show that likelihood optimization in the low SNR regime reduces to a sequence of least squares optimization problems that match the moments of the estimate to the ground truth moments one by one. This connection is a stepping stone toward the analysis of EM and maximum likelihood estimation in a wide range of models. A motivating application for the study of low SNR mixture models is cryo-electron microscopy data, which can be modeled as a GMM with algebraic constraints imposed on the mixture centers. We discuss the application of our expansion to algebraically constrained GMMs, among other example models of interest.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube