Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The path to instability in compact multi-planetary systems (2006.14903v2)

Published 26 Jun 2020 in astro-ph.EP

Abstract: The dynamical stability of tightly packed exoplanetary systems remains poorly understood. While for a two-planet system a sharp stability boundary exists, numerical simulations of three and more planet systems show that they can experience instability on timescales up to billions of years. Moreover, an exponential trend between the planet orbital separation measured in units of Hill radii and the survival time has been reported. While these findings have been observed in numerous numerical simulations, little is known of the actual mechanism leading to instability. Contrary to a constant diffusion process, planetary systems seem to remain dynamically quiescent for most of their lifetime before a very short unstable phase. In this work, we show how the slow chaotic diffusion due to the overlap of three-body resonances dominates the timescale leading to the instability for initially coplanar and circular orbits. While the last instability phase is related to scattering due to two-planet mean motion resonances (MMR), for circular orbits the two-planets MMR are too far separated to destabilize systems initially away from them. We develop an analytical model to generalize the empirical trend obtained for equal mass and equally-spaced planets to general systems. We obtain an analytical estimate of the survival time consistent with simulations over four orders of magnitude for the planet to star mass ratio $\epsilon$, and 6 to 8 orders of magnitude for the instability time. We also confirm that measuring the orbital spacing in terms of Hill radii is not adapted and that the right spacing unit scales as $\epsilon{1/4}$. We predict that beyond a certain spacing, the three-planet resonances are not overlapped, which results in an increase of the survival time. We finally discuss the extension of our result to more general systems, containing more planets on initially non circular orbits.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.