Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resilient Sensor Placement for Kalman Filtering in Networked Systems: Complexity and Algorithms (2006.14036v1)

Published 24 Jun 2020 in math.OC, cs.SY, and eess.SY

Abstract: Given a linear dynamical system affected by noise, we study the problem of optimally placing sensors (at design-time) subject to a sensor placement budget constraint in order to minimize the trace of the steady-state error covariance of the corresponding Kalman filter. While this problem is NP-hard in general, we consider the underlying graph associated with the system dynamics matrix, and focus on the case when there is a single input at one of the nodes in the graph. We provide an optimal strategy (computed in polynomial-time) to place the sensors over the network. Next, we consider the problem of attacking (i.e., removing) the placed sensors under a sensor attack budget constraint in order to maximize the trace of the steady-state error covariance of the resulting Kalman filter. Using the insights obtained for the sensor placement problem, we provide an optimal strategy (computed in polynomial-time) to attack the placed sensors. Finally, we consider the scenario where a system designer places the sensors under a sensor placement budget constraint, and an adversary then attacks the placed sensors subject to a sensor attack budget constraint. The resilient sensor placement problem is to find a sensor placement strategy to minimize the trace of the steady-state error covariance of the Kalman filter corresponding to the sensors that survive the attack. We show that this problem is NP-hard, and provide a pseudo-polynomial-time algorithm to solve it.

Citations (14)

Summary

We haven't generated a summary for this paper yet.