Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Macroeconomy as a Random Forest (2006.12724v3)

Published 23 Jun 2020 in econ.EM and stat.ML

Abstract: I develop Macroeconomic Random Forest (MRF), an algorithm adapting the canonical Machine Learning (ML) tool to flexibly model evolving parameters in a linear macro equation. Its main output, Generalized Time-Varying Parameters (GTVPs), is a versatile device nesting many popular nonlinearities (threshold/switching, smooth transition, structural breaks/change) and allowing for sophisticated new ones. The approach delivers clear forecasting gains over numerous alternatives, predicts the 2008 drastic rise in unemployment, and performs well for inflation. Unlike most ML-based methods, MRF is directly interpretable -- via its GTVPs. For instance, the successful unemployment forecast is due to the influence of forward-looking variables (e.g., term spreads, housing starts) nearly doubling before every recession. Interestingly, the Phillips curve has indeed flattened, and its might is highly cyclical.

Citations (37)

Summary

We haven't generated a summary for this paper yet.