Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Term Structure Models with Nonlinearities using Gaussian Processes (2305.11001v1)

Published 18 May 2023 in stat.AP, stat.ME, and stat.ML

Abstract: The importance of unspanned macroeconomic variables for Dynamic Term Structure Models has been intensively discussed in the literature. To our best knowledge the earlier studies considered only linear interactions between the economy and the real-world dynamics of interest rates in DTSMs. We propose a generalized modelling setup for Gaussian DTSMs which allows for unspanned nonlinear associations between the two and we exploit it in forecasting. Specifically, we construct a custom sequential Monte Carlo estimation and forecasting scheme where we introduce Gaussian Process priors to model nonlinearities. Sequential scheme we propose can also be used with dynamic portfolio optimization to assess the potential of generated economic value to investors. The methodology is presented using US Treasury data and selected macroeconomic indices. Namely, we look at core inflation and real economic activity. We contrast the results obtained from the nonlinear model with those stemming from an application of a linear model. Unlike for real economic activity, in case of core inflation we find that, compared to linear models, application of nonlinear models leads to statistically significant gains in economic value across considered maturities.

Summary

We haven't generated a summary for this paper yet.