Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Predicting Temporal Sets with Deep Neural Networks (2006.11483v4)

Published 20 Jun 2020 in cs.LG and cs.AI

Abstract: Given a sequence of sets, where each set contains an arbitrary number of elements, the problem of temporal sets prediction aims to predict the elements in the subsequent set. In practice, temporal sets prediction is much more complex than predictive modelling of temporal events and time series, and is still an open problem. Many possible existing methods, if adapted for the problem of temporal sets prediction, usually follow a two-step strategy by first projecting temporal sets into latent representations and then learning a predictive model with the latent representations. The two-step approach often leads to information loss and unsatisfactory prediction performance. In this paper, we propose an integrated solution based on the deep neural networks for temporal sets prediction. A unique perspective of our approach is to learn element relationship by constructing set-level co-occurrence graph and then perform graph convolutions on the dynamic relationship graphs. Moreover, we design an attention-based module to adaptively learn the temporal dependency of elements and sets. Finally, we provide a gated updating mechanism to find the hidden shared patterns in different sequences and fuse both static and dynamic information to improve the prediction performance. Experiments on real-world data sets demonstrate that our approach can achieve competitive performances even with a portion of the training data and can outperform existing methods with a significant margin.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.