Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The MCC-F1 curve: a performance evaluation technique for binary classification (2006.11278v1)

Published 17 Jun 2020 in stat.ML and cs.LG

Abstract: Many fields use the ROC curve and the PR curve as standard evaluations of binary classification methods. Analysis of ROC and PR, however, often gives misleading and inflated performance evaluations, especially with an imbalanced ground truth. Here, we demonstrate the problems with ROC and PR analysis through simulations, and propose the MCC-F1 curve to address these drawbacks. The MCC-F1 curve combines two informative single-threshold metrics, MCC and the F1 score. The MCC-F1 curve more clearly differentiates good and bad classifiers, even with imbalanced ground truths. We also introduce the MCC-F1 metric, which provides a single value that integrates many aspects of classifier performance across the whole range of classification thresholds. Finally, we provide an R package that plots MCC-F1 curves and calculates related metrics.

Citations (42)

Summary

We haven't generated a summary for this paper yet.