Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Software Defection Prediction Performance: Why Using the Matthews Correlation Coefficient Matters (2003.01182v1)

Published 2 Mar 2020 in cs.SE

Abstract: Context: There is considerable diversity in the range and design of computational experiments to assess classifiers for software defect prediction. This is particularly so, regarding the choice of classifier performance metrics. Unfortunately some widely used metrics are known to be biased, in particular F1. Objective: We want to understand the extent to which the widespread use of the F1 renders empirical results in software defect prediction unreliable. Method: We searched for defect prediction studies that report both F1 and the Matthews correlation coefficient (MCC). This enabled us to determine the proportion of results that are consistent between both metrics and the proportion that change. Results: Our systematic review identifies 8 studies comprising 4017 pairwise results. Of these results, the direction of the comparison changes in 23% of the cases when the unbiased MCC metric is employed. Conclusion: We find compelling reasons why the choice of classification performance metric matters, specifically the biased and misleading F1 metric should be deprecated.

Citations (84)

Summary

We haven't generated a summary for this paper yet.