Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes (2006.09914v3)

Published 17 Jun 2020 in cs.LG and stat.ML

Abstract: Neural Stochastic Differential Equations model a dynamical environment with neural nets assigned to their drift and diffusion terms. The high expressive power of their nonlinearity comes at the expense of instability in the identification of the large set of free parameters. This paper presents a recipe to improve the prediction accuracy of such models in three steps: i) accounting for epistemic uncertainty by assuming probabilistic weights, ii) incorporation of partial knowledge on the state dynamics, and iii) training the resultant hybrid model by an objective derived from a PAC-Bayesian generalization bound. We observe in our experiments that this recipe effectively translates partial and noisy prior knowledge into an improved model fit.

Citations (15)

Summary

We haven't generated a summary for this paper yet.