Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deterministic Approximation to Neural SDEs (2006.08973v6)

Published 16 Jun 2020 in cs.LG and stat.ML

Abstract: Neural Stochastic Differential Equations (NSDEs) model the drift and diffusion functions of a stochastic process as neural networks. While NSDEs are known to make accurate predictions, their uncertainty quantification properties have been remained unexplored so far. We report the empirical finding that obtaining well-calibrated uncertainty estimations from NSDEs is computationally prohibitive. As a remedy, we develop a computationally affordable deterministic scheme which accurately approximates the transition kernel, when dynamics is governed by a NSDE. Our method introduces a bidimensional moment matching algorithm: vertical along the neural net layers and horizontal along the time direction, which benefits from an original combination of effective approximations. Our deterministic approximation of the transition kernel is applicable to both training and prediction. We observe in multiple experiments that the uncertainty calibration quality of our method can be matched by Monte Carlo sampling only after introducing high computational cost. Thanks to the numerical stability of deterministic training, our method also improves prediction accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.