Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Interpretations of Normalization Methods in Deep Learning (2006.09104v1)

Published 16 Jun 2020 in cs.LG and stat.ML

Abstract: In recent years, a variety of normalization methods have been proposed to help train neural networks, such as batch normalization (BN), layer normalization (LN), weight normalization (WN), group normalization (GN), etc. However, mathematical tools to analyze all these normalization methods are lacking. In this paper, we first propose a lemma to define some necessary tools. Then, we use these tools to make a deep analysis on popular normalization methods and obtain the following conclusions: 1) Most of the normalization methods can be interpreted in a unified framework, namely normalizing pre-activations or weights onto a sphere; 2) Since most of the existing normalization methods are scaling invariant, we can conduct optimization on a sphere with scaling symmetry removed, which can help stabilize the training of network; 3) We prove that training with these normalization methods can make the norm of weights increase, which could cause adversarial vulnerability as it amplifies the attack. Finally, a series of experiments are conducted to verify these claims.

Citations (32)

Summary

We haven't generated a summary for this paper yet.