Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond BatchNorm: Towards a Unified Understanding of Normalization in Deep Learning (2106.05956v4)

Published 10 Jun 2021 in cs.LG and cs.CV

Abstract: Inspired by BatchNorm, there has been an explosion of normalization layers in deep learning. Recent works have identified a multitude of beneficial properties in BatchNorm to explain its success. However, given the pursuit of alternative normalization layers, these properties need to be generalized so that any given layer's success/failure can be accurately predicted. In this work, we take a first step towards this goal by extending known properties of BatchNorm in randomly initialized deep neural networks (DNNs) to several recently proposed normalization layers. Our primary findings follow: (i) similar to BatchNorm, activations-based normalization layers can prevent exponential growth of activations in ResNets, but parametric techniques require explicit remedies; (ii) use of GroupNorm can ensure an informative forward propagation, with different samples being assigned dissimilar activations, but increasing group size results in increasingly indistinguishable activations for different samples, explaining slow convergence speed in models with LayerNorm; and (iii) small group sizes result in large gradient norm in earlier layers, hence explaining training instability issues in Instance Normalization and illustrating a speed-stability tradeoff in GroupNorm. Overall, our analysis reveals a unified set of mechanisms that underpin the success of normalization methods in deep learning, providing us with a compass to systematically explore the vast design space of DNN normalization layers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ekdeep Singh Lubana (33 papers)
  2. Robert P. Dick (21 papers)
  3. Hidenori Tanaka (36 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.