Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Ratio Image Based CNN Algorithm For SAR Despeckling (1906.04111v1)

Published 10 Jun 2019 in cs.CV

Abstract: In SAR domain many application like classification, detection and segmentation are impaired by speckle. Hence, despeckling of SAR images is the key for scene understanding. Usually despeckling filters face the trade-off of speckle suppression and information preservation. In the last years deep learning solutions for speckle reduction have been proposed. One the biggest issue for these methods is how to train a network given the lack of a reference. In this work we proposed a convolutional neural network based solution trained on simulated data. We propose the use of a cost function taking into account both spatial and statistical properties. The aim is two fold: overcome the trade-off between speckle suppression and details suppression; find a suitable cost function for despeckling in unsupervised learning. The algorithm is validated on both real and simulated data, showing interesting performances.

Citations (31)

Summary

We haven't generated a summary for this paper yet.