Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Reinforcement Learning Control by Direct Heuristic Dynamic Programming: from Time-Driven to Event-Driven (2006.08938v1)

Published 16 Jun 2020 in eess.SY, cs.LG, and cs.SY

Abstract: In this paper time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives. Among existing approximate dynamic programming (ADP) and reinforcement learning (RL) algorithms, the direct heuristic dynamic programming (dHDP) has been shown an effective tool as demonstrated in solving several complex learning control problems. It continuously updates the control policy and the critic as system states continuously evolve. It is therefore desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise. Toward this goal, we propose a new event-driven dHDP. By constructing a Lyapunov function candidate, we prove the uniformly ultimately boundedness (UUB) of the system states and the weights in the critic and the control policy networks. Consequently we show the approximate control and cost-to-go function approaching BeLLMan optimality within a finite bound. We also illustrate how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.