Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Index Selection for NoSQL Database with Deep Reinforcement Learning (2006.08842v1)

Published 16 Jun 2020 in cs.DB and cs.AI

Abstract: We propose a new approach of NoSQL database index selection. For different workloads, we select different indexes and their different parameters to optimize the database performance. The approach builds a deep reinforcement learning model to select an optimal index for a given fixed workload and adapts to a changing workload. Experimental results show that, Deep Reinforcement Learning Index Selection Approach (DRLISA) has improved performance to varying degrees according to traditional single index structures.

Citations (16)

Summary

We haven't generated a summary for this paper yet.