Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Correspondence Modules and Persistence Sheaves: A Unifying Perspective on One-Parameter Persistent Homology (2006.08557v2)

Published 15 Jun 2020 in math.AT

Abstract: We develop a unifying framework for the treatment of various persistent homology architectures using the notion of correspondence modules. In this formulation, morphisms between vector spaces are given by partial linear relations, as opposed to linear mappings. In the one-dimensional case, among other things, this allows us to: (i) treat persistence modules and zigzag modules as algebraic objects of the same type; (ii) give a categorical formulation of zigzag structures over a continuous parameter; and (iii) construct barcodes associated with spaces and mappings that are richer in geometric information. A structural analysis of one-parameter persistence is carried out at the level of sections of correspondence modules that yield sheaf-like structures, termed persistence sheaves. Under some tameness hypotheses, we prove interval decomposition theorems for persistence sheaves and correspondence modules, as well as an isometry theorem for persistence diagrams obtained from interval decompositions. Applications include: (a) a Mayer-Vietoris sequence that relates the persistent homology of sublevelset filtrations and superlevelset filtrations to the levelset homology module of a real-valued function and (b) the construction of slices of 2-parameter persistence modules along negatively sloped lines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.