Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Abstract: Stochastic gradient descent with momentum, also known as Stochastic Heavy Ball method (SHB), is one of the most popular algorithms for solving large-scale stochastic optimization problems in various machine learning tasks. In practical scenarios, tuning the step-size and momentum parameters of the method is a prohibitively expensive and time-consuming process. In this work, inspired by the recent advantages of stochastic Polyak step-size in the performance of stochastic gradient descent (SGD), we propose and explore new Polyak-type variants suitable for the update rule of the SHB method. In particular, using the Iterate Moving Average (IMA) viewpoint of SHB, we propose and analyze three novel step-size selections: MomSPS${\max}$, MomDecSPS, and MomAdaSPS. For MomSPS${\max}$, we provide convergence guarantees for SHB to a neighborhood of the solution for convex and smooth problems (without assuming interpolation). If interpolation is also satisfied, then using MomSPS$_{\max}$, SHB converges to the true solution at a fast rate matching the deterministic HB. The other two variants, MomDecSPS and MomAdaSPS, are the first adaptive step-size for SHB that guarantee convergence to the exact minimizer - without a priori knowledge of the problem parameters and without assuming interpolation. Our convergence analysis of SHB is tight and obtains the convergence guarantees of stochastic Polyak step-size for SGD as a special case. We supplement our analysis with experiments validating our theory and demonstrating the effectiveness and robustness of our algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.